Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.

نویسندگان

  • Yujiro Yamanaka
  • Sato Honma
  • Ken-ichi Honma
چکیده

Effects of scheduled exposures to novel environment with a running-wheel were examined on re-entrainment to 8 h shifted light-dark (LD) cycles of mouse circadian rhythms in locomotor activity and clock gene, Per1, expression in the suprachiasmatic nucleus (SCN) and peripheral tissues. Per1 expression was monitored by a bioluminescence reporter introduced into mice. The animals were exposed to the novel environment for 3 h from the shifted dark onset for four cycles and released into constant darkness. In the phase-advance shift, the circadian rhythm in locomotor activity fully re-entrained in the exposed group, whereas it was in transients in the control. On the other hand, the circadian rhythm of Per1 expression in the SCN almost completely re-entrained in both the control and exposed groups. In the skeletal muscle and lung, the circadian rhythm fully re-entrained in the exposed group, whereas the rhythms in the control did not. In the phase-delay shift, the circadian rhythms in locomotor activity and Per1 expression almost completely re-entrained in both groups. These findings indicate that the scheduled exposures to novel environment with a running-wheel differentially accelerate the re-entrainment of the mouse peripheral clocks to 8 h phase-advanced LD cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of photic entrainment and altered free-running circadian rhythms in math5-/- mice.

Mammalian free-running circadian rhythms are entrained to the external light/dark cycle by photic signaling to the suprachiasmatic nuclei via the retinohypothalamic tract (RHT). We investigated the circadian entrainment and clock properties of math5-/- mutant mice. math5 is a critical regulator of retinal ganglion cell development; math5-/- mice show severe optic nerve hypoplasia. By anterograd...

متن کامل

Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.

Circadian rhythms are physiological and behavioral oscillations that have period lengths of approximately 24 h. In mammals, circadian rhythms are driven by a master pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). These rhythms can be entrained to light:dark cycles through photic and non-photic cues. Current research suggests that the SCN re-entrains rapidly to new light:dark (LD) c...

متن کامل

Entrainment of the master circadian clock by scheduled feeding.

The master circadian clock, located in the mammalian suprachiasmatic nuclei (SCN), generates and coordinates circadian rhythmicity, i.e., internal organization of physiological and behavioral rhythms that cycle with a near 24-h period. Light is the most powerful synchronizer of the SCN. Although other nonphotic cues also have the potential to influence the circadian clock, their effects can be ...

متن کامل

Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions

The circadian clock system in peripheral tissues can endogenously oscillate and is entrained by the light-dark and fasting-feeding cycles in mammals. Although the system's range of entrainment to light-dark cycles with a non-24 h (<24 h) interval has been studied, the range of entrainment to fasting-feeding cycles with shorter periods (<24 h) has not been investigated in peripheral molecular cl...

متن کامل

Measuring circadian and acute light responses in mice using wheel running activity.

Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day). They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes to cells : devoted to molecular & cellular mechanisms

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2008